جستجو در تالارهای گفتگو
در حال نمایش نتایج برای برچسب های 'ماشین بردار پشتیبان'.
2 نتیجه پیدا شد
-
پیشبینی ظرفیت باربری جانبی شمعها در خاکهای رسی با استفاده از ماشین بردار پشتیبان
admin پاسخی ارسال کرد برای یک موضوع در مقالات تخصصی گرایش مهندسی ژئوتکنیک
پیشبینی ظرفیت باربری جانبی شمعها در خاکهای رسی با استفاده از ماشین بردار پشتیبان علیرضا اردکانی؛ وحیدرضا کوهستانی چکیده پیشبینی ظرفیت باربری شمعهای تحت بار جانبی یکی از مسائل اساسی در مهندسی ژئوتکنیک است و تاکنون روشهای متفاوتی برای ارزیابی آن ارائه شده است. ماشین بردار پشتیبان (SVM) یک روش نسبتاً جدید هوش مصنوعی است که در بسیاری از مسائل ژئوتکنیکی به طور موفقیتآمیزی مورد استفاده قرار گرفته است. این مقاله کاربرد مدل SVM برای پیشبینی ظرفیت باربری جانبی شمعها در خاکهای رسی را شرح میدهد. از نتایج مدلهای کوچک مقیاس آزمایشگاهی شمعهای صلب در خاکهای رسی با پارامترهای ورودی قطر شمع (D)، طول مدفون شمع (L)، خروج از مرکز بار (e) و مقاومت برشی زهکشینشده خاک (Su) برای توسعه و ارزیابی مدل استفاده شده است. ظرفیت باربری جانبی پیشبینیشده توسط مدل پیشنهادی با نتایج حاصل از مدل شبکه عصبی مصنوعی (ANN) و همچنین روشهای تحلیلی Broms و Hansen مقایسه شده است. نتایج نشان از کارایی بهتر مدل SVM نسبت به روشهای مذکور دارد. این مطالعه نشان میدهد که روش SVM یک ابزار جایگزین برای مهندسین ژئوتکنیک به منظور پیشبینی ظرفیت باربری جانبی شمعها ارائه میدهد. Prediction of Lateral Bearing Capacity of Pile in Clay Using Support Vector Machine منبع دانلود CEEJ_Volume 47.2_Issue 87_Pages 1-10.pdf-
- ماشین بردار پشتیبان (svm)
- svm
- (و 5 مورد دیگر)
-
استفاده از مدل هوش مصنوعی مرکب نظارت شده برای پیشبینی سطح آب زیرزمینی
admin پاسخی ارسال کرد برای یک موضوع در مقالات تخصصی گرایش مهندسی آب
استفاده از مدل هوش مصنوعی مرکب نظارت شده برای پیشبینی سطح آب زیرزمینی عطاالله ندیری؛ فاطمه واحدی؛ اصغر اصغری مقدم؛ علی کدخدایی منابع آب زیرزمینی از مهمترین منابع تأمین آب هستند، لذا مدلسازی آنها حائز اهمیت میباشد. در این میان مطالعه و بررسی نوسانات سطح آب زیرزمینی از نظر مطالعات مدیریتی، ایجاد سازههای مهندسی، مصارف کشاورزی و حصول آبهای زیرزمینی با کیفیت بالا از اهمیت بالایی برخوردار است. عمده تقاضا برای آب شرب و کشاورزی در دشت مشگینشهر نیز از طریق آب زیرزمینی تأمین میشود. در این تحقیق چهار مدل هوش مصنوعی که عبارتند از شبکه عصبی پیشرو، شبکه عصبی برگشتی، منطق فازی ساگنو و ماشینبردار پشتیبان برای پیشبینی سطح آب زیرزمینی استفاده شدند. با توجه به نزدیک بودن نتایج به دست آمده و با توجه به این مسئله که مدلهای مختلف در مراحل مختلف مدلسازی نتایج متفاوتی ارائه دادند، انتخاب یکی از مدلها به عنوان مدل منتخب معقول به نظر نمیرسید. لذا از ترکیب غیر خطی این چهار مدل که مدل هوش مصنوعی مرکب نظارت شده نامیده میشود، برای ترکیب نتایج این مدلها استفاده شد تا نتایج به دست آمده تقویت شده و از توانایی مدلهای مختلف به طور همزمان استفاده شود. به منظور ارزیابی کارایی و دقت مدلها در پیشبینی، از دو معیار مختلف RMSE و R2 استفاده شد. نتایج نشان دادند که مدل SCMAI با مقادیر R2 برابر 85/0 و 90/0 به ترتیب برای پیزومترهای شماره 1 و 22 در مرحله آموزش بهترین پیشبینی را نسبت به هر کدام از چهار مدل منفرد هوش مصنوعی ارائه کرده است. همچنین مدل SCMAI توانست RMSEE پیشبینی را تا 9% درصد برای پیزومتر شماره یک و 17% درصد برای پیزومتر شماره دو کاهش دهد. Supervised Intelligent Committee Machine Method for Groundwater Level Prediction منبع دانلود CEEJ56041479673800.pdf-
- سطح آب زیرزمینی
- شبکه عصبی مصنوعی
-
(و 3 مورد دیگر)
برچسب زده شده با :