Behaviour of thin steel plate shear walls regarding frame members
M.M. Alinia∗, M. Dastfan Department of Civil Engineering, Amirkabir University of Technology, Tehran, Iran Received 31 January 2005; accepted 2 November 2005
Abstract Steel plate shear walls in buildings are known to be an effective and strong means for resisting lateral forces. The view of some structural designers is to use heavy stiffeners to reinforce and increase the buckling capacity of shear walls; whereas, if the walls are left unstiffened and allowed to buckle, their energy absorption will increase significantly due to the post-buckling capacity. On the other hand, the optimal design of thin steel plate shear walls (TSPSWs), which are categorized as thin-walled structures, involves the proper prediction of their buckling strength. In turn, this prediction is a function of the status of their assumed boundary conditions. Many design rules conservatively suggest simply supported boundary conditions for elastic member restraints. In this paper, the effects of surrounding members (i.e. beams and columns) on the overall behaviour of TSPSWs are studied. The results show that, unlike the present view, the flexural stiffness of surrounding members has no significant effects, either on elastic shear buckling or on the post-buckling behaviour of shear walls. The torsional rigidity has a significant effect only on the elastic buckling load, and the extensional stiffness slightly affects the post-buckling capacity. c 2005 Elsevier Ltd. All rights reserved. Keywords: Shear buckling; Thin plates; Elastic boundary conditions; Shear walls; Plate girders; Post-buckling
Journal of Constructional Steel Research 62 (2006) 730–738
1-s2.0-S0143974X05001835-main.pdf