جستجو در تالارهای گفتگو
در حال نمایش نتایج برای برچسب های 'FEM'.
2 نتیجه پیدا شد
-
Experimental and numerical study of unstiffened steel plate shear wall structures
admin پاسخی ارسال کرد برای یک موضوع در مقالات تخصصی گرایش سازه
Experimental and numerical study of unstiffened steel plate shear wall structures Meng Wang a,⁎, Yongjiu Shi b, Jian Xu c,Weiguo Yang a, Yixin Li b a School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China b Department of Civil Engineering, Tsinghua University, Beijing 100084, China c China Southwest Architectural Design and Research Institute Corp. LTD, Chengdu 610081, China a r t i c l e i n f o a b s t r a c t Article history: Received 13 March 2015 Accepted 6 May 2015 Available online 20 June 2015 Keywords: Unstiffened thin steel plate shear wall structure Hysteretic behavior Energy dissipation capacity Ductility Finite element method (FEM) Column stiffness In order to investigate the seismic behaviors of unstiffened thin steel plate shear wall structure, tests of four three-story unstiffened steel plate shear wall specimens under cyclic loads were carried out. Parameters of the specimens included height-to-thickness ratio, span-to-height ratio and middle brace. The carrying capacity, hysteretic behavior, degraded characteristics, ductility, failuremodes, energy dissipation capacity were analyzed and compared deeply. Besides, the nonlinear finite element method of shear wall structure was also established, which was verified by test results. Finally, the effect of column stiffness on load-carrying capacity was studied. The practical requirements of in-plane and out-of-plane stiffness of edge column were suggested. The experimental and numerical results showed that: this kind structure exhibits high strength, good energy dissipation capacity, and good ductility (the ductility coefficients are more than 3.0). When the inter-story drift angle reaches 1/50, the strength degradation is no more than 5%, indicating that the structure has good seismic behaviors. The span-to-height ratio has little effect on load-carrying capacity, while slightly affects the initial stiffness and ductility. The effect of height-to-thickness ratio (thickness) on load-carrying capacity is relatively larger than other factors. The middle braces do not improve the behaviors of structures. The stiffness of edge column has great effect on lateral load-carrying capacity of shearwall structures. The value of column stiffness index could bewithin 2.0–2.5 to achieve the sufficient constraints and economical benefit. 1-s2.0-S0143974X15001406-main.pdf-
- Unstiffened thin steel plate
- Hysteretic behavior
- (و 6 مورد دیگر)
-
Seismic behaviors of steel plate shear wall structures with construction details and materials
admin پاسخی ارسال کرد برای یک موضوع در مقالات تخصصی گرایش زلزله
Seismic behaviors of steel plate shear wall structures with construction details and materials Wang Meng a,⁎, YangWeiguo a, Shi Yongjiub, Xu Jian c a School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China b Department of Civil Engineering, Tsinghua University, Beijing 100084, China c China Southwest Architectural Design and Research Institute Corp. Ltd, Chengdu 610081, China a r t i c l e i n f o a b s t r a c t Article history: Received 3 May 2014 Accepted 8 January 2015 Available online 23 February 2015 Keywords: Steel plate shear wall structure Structural construction detail Low yield point steel T type stiffened ribs Finite element method (FEM) Hysteretic behavior In order to have a systematic and comprehensive comparison of seismic behaviors of steel plate shear wall structures with different construction details, a numerical method was proposed, which was proved accurately to predict the performance of structures with published quasi-static tests. Then, eight typical steel shear wall models with different structural construction details were established. Also an advanced stiffened low yield point steel plate shear wall was proposed to avoid excessive out-of-plane deformation. The seismic behaviors of above nine shear wall models were fully compared and analyzed, and key issues, such as energy-dissipating capacity, ductility, out-of-plane deformation and the effect of tension field on the columns were discussed in depth. The results showed that: in high-intensity seismic area, load-carrying capacity, hysteretic behaviors, failure modes, seismic ductility and economic performance should be taken into account comprehensively to choose the appropriate form of steel plate shear wall structure; the proposed low yield point steel plate shear wall with T type stiffened ribs could most effectively improve the energy dissipation capacity and ductility, and lessen the impact of tension field on the columns, besides, it had better load-carrying capacity and smallest out-of-plane deformation. This method provided a good way for improving the seismic behaviors of steel shear wall structures. 1-s2.0-S0143974X15000097-main.pdf-
- Steel plate shear wall
- Structural construction
- (و 6 مورد دیگر)