جستجو در تالارهای گفتگو
در حال نمایش نتایج برای برچسب های 'Nonlinear Time-History Analys'.
2 نتیجه پیدا شد
-
Capacity Design Optimization of Steel Building Frameworks Using Nonlinear Time-History Analysis Date 2012-08-24 Author Xue, Yusong A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Civil Engineering Abstract This study proposes a seismic design optimization method for steel building frameworks following the capacity design principle. Currently, when a structural design employs an elastic analysis to evaluate structural demands, the analysis results can be used only for the design of fuse members, and the inelastic demands on non-fuse members have to be obtained by hand calculations. Also, the elastic-analysis-based design method is unable to warrant a fully valid seismic design since the evaluation tool cannot always capture the true inelastic behaviour of a structure. The proposed method is to overcome these shortcomings by adopting the most sophisticated nonlinear dynamic procedure, i.e., Nonlinear Time- (or Response-) History Analysis as the evaluation tool for seismic demands. The proposed optimal design formulation includes three objectives: the minimum weight or cost of the seismic force resisting system, the minimum seismic input energy or potential earthquake damage and the maximum hysteretic energy ratio of fuse members. The explicit design constraints include the plastic rotation limits on individual frame members and the inter-story drift limits on the overall performance of the structure. Strength designs of each member are treated as implicit constraints through considering both geometric and material nonlinearities of the structure in the nonlinear dynamic analysis procedure. A multi-objective Genetic Algorithm is employed to search for the Pareto-optimal solutions. The study provides design examples for moment resisting frames and eccentrically braced frames. In the examples some numerical strategies, such as integrating load and resistance factors in analysis, grouping design variables of a link and the beams outside the link, rounding-off the objective function values, are introduced. The design examples confirm that the proposed optimization formulation is able to conduct automated capacity design of steel frames. In particular, the third objective, to maximize the hysteretic energy ratio of fuse members, drives the optimization algorithm to search for design solutions with favorable plastic mechanisms, which is the essence of the capacity design principle. For the proposed inelastic-analysis-based design method, the seismic performance factors (i.e., ductility- and overstrength-related force reduction factors) are no longer needed. Furthermore, problem-dependent capacity design requirements, such as strong-column-weak-beam for moment resisting frames, are not included in the design formulation. Thus, the proposed design method is general and applicable to various types of building frames. URI [Hidden Content] Collections Theses & Dissertations Civil and Environmental Engineering Theses & Dissertations دانلود: [Hidden Content] Capacity_Design_Optimization_of.pdf
-
- Capacity Design Optimization
- Steel Building Framework
- (و 4 مورد دیگر)
-
Comparison of chevron and suspended-zipper braced steel frames
rahmatii پاسخی ارسال کرد برای یک موضوع در مقالات تخصصی گرایش سازه
Comparison of chevron and suspended-zipper braced steel frames Yigit Ozcelik a, Afsin Saritas b,⁎, Patricia M. Clayton a a Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, USA b Department of Civil Engineering, Middle East Technical University, Ankara 06800, Turkey a r t i c l e i n f o a b s t r a c t Article history: Received 22 June 2015 Received in revised form 14 November 2015 Accepted 8 December 2015 Available online xxxx a b s t r a c t Suspended-zipper braced frame is a modified configuration of chevron braced frame inwhich zipper columns are added between story beams and a hat truss is attached between top two stories in order to redistribute the unbalanced vertical forces emerging following the brace buckling to avoid the use of deep beams. In this study, three- and nine-story chevron and suspended-zipper braced frames are analyzed to compare their seismic performances. The beams, columns, braces and zipper columns are modeled using nonlinear force-formulation frame elements and nonlinear geometric effects are included by utilizing corotational transformation. Nonlinear static analyses are performed until reaching a roof drift ratio of 3% and a set of twenty ground motion records scaled to match a 10% probability of exceedance in 50 years is used for nonlinear time-history analysis. The results appear to indicate that the lateral load capacity and drift demands for both low-rise chevron and suspendedzipper braced frames are very similar; however, the mid-rise chevron braced frame has a better performance compared to the mid-rise suspended-zipper braced frame. © 2015 Elsevier Ltd. All rights reserved. Keywords: Steel structures Concentrically braced frames Chevron braced frames Suspended-zipper braced frames Nonlinear static analysis Nonlinear time-history analysis 10.1016_j.jcsr.2015.12.019-Comparison-of-chevron-and-suspended-zipper-braced-steel-frames.pdf-
- Steel structures
- Concentrically braced frames
- (و 4 مورد دیگر)