جستجو در تالارهای گفتگو
در حال نمایش نتایج برای برچسب های 'cylindrical shells'.
1 نتیجه پیدا شد
-
PREDICTING THE BUCKLING CAPACITY OF STEEL CYLINDRICAL SHELLS WITH RECTANGULAR STRINGERS UNDER AXIAL
admin پاسخی ارسال کرد برای یک موضوع در مقالات تخصصی گرایش سازه
PREDICTING THE BUCKLING CAPACITY OF STEEL CYLINDRICAL SHELLS WITH RECTANGULAR STRINGERS UNDER AXIAL LOADING BY USING ARTIFICIAL NEURAL NETWORKS Z. Kalantari and M. S. Razzaghi Abstract A parametric study was carried out in order to investigate the buckling capacity of the vertically stiffened cylindrical shells. To this end ANSYS software was used. Cylindrical steel shells with different yield stresses, diameter-to-thickness ratios (D/t) and number of stiffeners were modeled and their buckling capacities were calculated by displacement control nonlinear static analysis. Radial basis function (RBF) neural networks were used to predict the buckling capacity of shells. Herein 70 percent of the results of numerical analyses were used to train the neural network and the remainders were used to test and validate the results of neural networks. Results of this study showed that RBF neural networks are useful tools to predict the buckling capacity of vertically stiffened cylindrical shells. It was also shown that buckling capacities of stiffened shells exponentially vary by distance of adjacent stiffeners (unstiffened length). Keywords Buckling, cylindrical shells, stiffener, Artificial Neural Networks چکیده به منظور بررسی ظرفیت کمانش پوسته های مطالعات پارامتریک پوسته های استوانه ای با سخت کننده های قائم، مطالعات پارامتریک به انجام رسید. برای این منظور از نرم افزار ANSYS استفاده شد. پوسته ای استوانه ای فولادی با تنش جاری شدن، نسبت ارتفاع به قطر و تعداد سخت کننده های گوناگون مدلسازی شدند و ظرفیت کمانش آنها با استفاده از تحلیل استاتیکی غیر ارتجاعی با کنترل تغییر مکان محاسبه شد. به منظور پیش بینی ظرفیت محوری کمانش از شبکه عصبی RBF استفاده شد. برای این منظور هفتاد درصد از نتایج خروجی تحلیل های عددی برای آموزش شبکه استفاده شدند و مابقی برای تست و صحت سنجی نتایج کنار گذاشته شدند. نتایج این پژوهش نشان می دهد، شبکه های عصبی RBF ابزاری مناسب برای پیش بینی ظرفیت کمانش پوسته های استوانه ای با سخت کننده قائم هستند. علاوه بر این نشان داده شد که تغییرات ظرفیت کمانش پوسته ها با فاصله سخت کننده های مجاور (طول مهار نشده) به صورت نمایی تغییر می کند. منبع دانلود 28-8-7.pdf-
- cylindrical shells
- Buckling
-
(و 2 مورد دیگر)
برچسب زده شده با :