Hysteretic Analysis of Steel Plate Shear Walls (SPSWs) and A Modified Strip Model for SPSWs Lanhui Guo1,*, Ran Li1,2, Sumei Zhang1 and Guirong Yan3 1School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China 2China Academy of Building Research, Beijing 100013, China 3School of Engineering, University of Western Sydney, Penrith, NSW 1797, Australia (Received: 7 April 2010; Received revised form: 14 February 2012; Accepted: 16 February 2012) Abstract: Steel plate shear walls (SPSWs) have become more and more popular in recent years because of their potential huge energy dissipation capacity and ductility under lateral loads. Due to their low cost and fast construction, SPSWs have potential application in practice. The finite element software ANSYS applied to the analysis of the hysteretic behavior of SPSWs is described in this paper first. It was found that compressive stress existed in SPSWs and the effects became more evident with decreasing height-to-thickness ratio. This was validated by comparing theoretical and experimental test results. Secondly, based on the analytical results, a modified strip model is proposed. In the modified model, the compressive effects in the panel were taken into account and it was then found that the load-carrying capacity and the energy dissipation capacity agreed well with the already carefully validated experimental results. Key words: finite element (FE), steel plate shear wall (SPSW), hysteretic behavior, strip model, energy dissipation capacity.
1369-4332.15.10.1751.pdf