پیشبینی ظرفیت باربری جانبی شمعها در خاکهای رسی با استفاده از ماشین بردار پشتیبان
علیرضا اردکانی؛ وحیدرضا کوهستانی
چکیده
پیشبینی ظرفیت باربری شمعهای تحت بار جانبی یکی از مسائل اساسی در مهندسی ژئوتکنیک است و تاکنون روشهای متفاوتی برای ارزیابی آن ارائه شده است. ماشین بردار پشتیبان (SVM) یک روش نسبتاً جدید هوش مصنوعی است که در بسیاری از مسائل ژئوتکنیکی به طور موفقیتآمیزی مورد استفاده قرار گرفته است. این مقاله کاربرد مدل SVM برای پیشبینی ظرفیت باربری جانبی شمعها در خاکهای رسی را شرح میدهد. از نتایج مدلهای کوچک مقیاس آزمایشگاهی شمعهای صلب در خاکهای رسی با پارامترهای ورودی قطر شمع (D)، طول مدفون شمع (L)، خروج از مرکز بار (e) و مقاومت برشی زهکشینشده خاک (Su) برای توسعه و ارزیابی مدل استفاده شده است. ظرفیت باربری جانبی پیشبینیشده توسط مدل پیشنهادی با نتایج حاصل از مدل شبکه عصبی مصنوعی (ANN) و همچنین روشهای تحلیلی Broms و Hansen مقایسه شده است. نتایج نشان از کارایی بهتر مدل SVM نسبت به روشهای مذکور دارد. این مطالعه نشان میدهد که روش SVM یک ابزار جایگزین برای مهندسین ژئوتکنیک به منظور پیشبینی ظرفیت باربری جانبی شمعها ارائه میدهد.
Prediction of Lateral Bearing Capacity of Pile in Clay Using Support Vector Machine
منبع
دانلود
CEEJ_Volume 47.2_Issue 87_Pages 1-10.pdf